R20

Q.P. Code: 20HS0848

Reg. No:						
	1	1	1		(

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR

(AUTONOMOUS)

B.Tech I Year II Semester Regular Examinations November-2021 ENGINEERING PHYSICS

		ENGINEERING PHYSICS			
		(Mechanical Engineering)			
	Γin	ne: 3 hours	lax. M	arks: 60	
		(Answer all Five Units $5 \times 12 = 60$ Marks)			
		UNIT-I			
1	9	Outline the important conditions to get interference of light.	L2	4M	
•	h	Explain the formation of Newton's rings with necessary theory and derive the	L2	8M	
		expression for dark and bright fringes.		OIVI	
		OR			
2	a	What is diffraction grating? Derive the expression for wavelength of light by using	L3	6M	
		diffraction grating.			
	b	A plane transmission grating having 4000 lines per cm is illuminated with sodium	L3	6M	
	light normally. In the second order diffraction spectrum, the spectral lines are				
		deviated by 30°. Determine the wavelength of the spectral line.			
		UNIT-II			
3	a	Estimate the packing factor of BCC.	L5	6M	
	b	Develop an expression for the inter-planar spacing in terms of Miller indices for a	L3	6M	
		cubic crystal system.			
		OR			
4	a	Describe the principle and procedure of Debye-Scherrer method of X-ray	L2	8M	
		diffraction.			
	b	List the advantage of Debye-Scherrer method.	L1	4M	
		UNIT-III			
5	a	Define reverberation time. Derive the Sabine's formula for reverberation time. List	L3	8M	
		the factors controlling the reverberation time.			
	b	A hall consists of volume 360 m ³ has a reverberation time 0.8 seconds. Calculate the	L3	4M	
		total sound absorption coefficient of the hall.			
		OR			
6		List the properties of ultrasonic waves.	L1	6M	
	D	Discuss the applications of ultrasonic waves.	L2	6M	
		UNIT-IV			
7		What is Hooke's law? Explain.	L2	6M	
	b	Define stress and strain. Classify different types of strains.	L2	6M	
0		OR	Y 0	(3.7	
8	_	Extend the discussion on different types of supports.	L2	6M	
	b	The Young's modulus for steel wire is $2.2 \times 10^{11} \text{N/m}^2$ and its rigidity modulus is $8.1 \times 10^{10} \text{N/m}^2$.	L6	6M	
		x 10 ¹⁰ N/m ² . Predicts the Poisson's ratio and its bulk modulus.			
•		UNIT-V			
9		Prove that superconductor is a very good diamagnetic material.	L5	6M	
	b	Distinguish between type-I and type-II superconductors.	L4	6M	
10		OR	Y 0	53. 6	
10		Explain the basic principles of nanomaterials.	L2	5M	
	Ŋ	Summarize the sol-gel technique for synthesis of nanomaterials.	L2	7M	
		*** END ***			